199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756 | class ImageMatcher:
"""
ImageMatcher class for performing image matching and feature extraction.
Methods:
__init__(self, imgs_dir, output_dir, matching_strategy, local_features, matching_method, retrieval_option=None, pair_file=None, overlap=None, existing_colmap_model=None, custom_config={})
Initializes the ImageMatcher class.
generate_pairs(self, **kwargs) -> Path:
Generates pairs of images for matching.
rotate_upright_images(self)
Rotates upright images.
extract_features(self) -> Path:
Extracts features from the images.
match_pairs(self, feature_path, try_full_image=False) -> Path:
Matches pairs of images.
rotate_back_features(self, feature_path)
Rotates back the features.
"""
default_conf_general = {
"quality": Quality.MEDIUM,
"tile_selection": TileSelection.NONE,
"geom_verification": GeometricVerification.PYDEGENSAC,
"output_dir": "output",
"tile_size": [2048, 1365],
"tile_overlap": 0,
"force_cpu": False,
"do_viz": False,
"fast_viz": True,
"hide_matching_track": True,
"do_viz_tiles": False,
"preselection_pipeline": "superpoint+lightglue",
}
def __init__(
self,
config: Config,
# imgs_dir: Path,
# output_dir: Path,
# matching_strategy: str,
# local_features: str,
# matching_method: str,
# retrieval_option: str = None,
# pair_file: Path = None,
# overlap: int = None,
# existing_colmap_model: Path = None,
# custom_config: dict = {},
):
"""
Initializes the ImageMatcher class.
Parameters:
imgs_dir (Path): Path to the directory containing the images.
output_dir (Path): Path to the output directory for the results.
matching_strategy (str): The strategy for generating pairs of images for matching.
local_features (str): The method for extracting local features from the images.
matching_method (str): The method for matching pairs of images.
retrieval_option (str, optional): The retrieval option for generating pairs of images. Defaults to None.
pair_file (Path, optional): Path to the file containing custom pairs of images. Required when 'retrieval_option' is set to 'custom_pairs'. Defaults to None.
overlap (int, optional): The overlap between tiles. Required when 'retrieval_option' is set to 'sequential'. Defaults to None.
existing_colmap_model (Path, optional): Path to the existing COLMAP model. Required when 'retrieval_option' is set to 'covisibility'. Defaults to None.
custom_config (dict, optional): Custom configuration settings. Defaults to {}.
Raises:
ValueError: If the 'overlap' option is required but not provided when 'retrieval_option' is set to 'sequential'.
ValueError: If the 'pair_file' option is required but not provided when 'retrieval_option' is set to 'custom_pairs'.
ValueError: If the 'pair_file' does not exist when 'retrieval_option' is set to 'custom_pairs'.
ValueError: If the 'existing_colmap_model' option is required but not provided when 'retrieval_option' is set to 'covisibility'.
ValueError: If the 'existing_colmap_model' does not exist when 'retrieval_option' is set to 'covisibility'.
ValueError: If the image folder is empty or contains only one image.
Returns:
None
"""
# Store configuration
self.config = config
self.image_dir = Path(config.general["image_dir"])
self.output_dir = Path(config.general["output_dir"])
self.strategy = config.general["matching_strategy"]
self.extraction = config.extractor["name"]
self.matching = config.matcher["name"]
self.pair_file = config.general["pair_file"]
# self.existing_colmap_model = config.general["db_path"]
# if config.general["retrieval"] == "covisibility":
# if self.existing_colmap_model is None:
# raise ValueError("'existing_colmap_model' option is required when 'strategy' is set to covisibility")
# else:
# if not self.existing_colmap_model.exists():
# raise ValueError(f"File {self.existing_colmap_model} does not exist")
# Initialize ImageList class
self.image_list = ImageList(self.image_dir)
images = self.image_list.img_names
if len(images) == 0:
raise ValueError(f"Image folder empty. Supported formats: {self.image_ext}")
elif len(images) == 1:
raise ValueError("Image folder must contain at least two images")
# Initialize output directory
self.output_dir.mkdir(parents=True, exist_ok=True)
# Initialize extractor
try:
Extractor = extractor_loader(extractors, self.extraction)
except AttributeError:
raise ValueError(
f"Invalid local feature extractor. {self.extraction} is not supported."
)
self._extractor = Extractor(self.config)
# Initialize matcher
try:
Matcher = matcher_loader(matchers, self.matching)
except AttributeError:
raise ValueError(f"Invalid matcher. {self.matching} is not supported.")
if self.matching == "lightglue":
self._matcher = Matcher(local_features=self.extraction, config=self.config)
else:
self._matcher = Matcher(self.config)
# Print configuration
logger.info("Running image matching with the following configuration:")
logger.info(f" Image folder: {self.image_dir}")
logger.info(f" Output folder: {self.output_dir}")
logger.info(f" Number of images: {len(self.image_list)}")
logger.info(f" Matching strategy: {self.strategy}")
logger.info(f" Image quality: {self.config.general['quality'].name}")
logger.info(f" Tile selection: {self.config.general['tile_selection'].name}")
logger.info(f" Feature extraction method: {self.extraction}")
logger.info(f" Matching method: {self.matching}")
logger.info(
f" Geometric verification: {self.config.general['geom_verification'].name}"
)
logger.info(f" CUDA available: {torch.cuda.is_available()}")
@property
def img_names(self):
return self.image_list.img_names
def run(self):
"""
Runs the image matching pipeline.
Returns:
None
Raises:
None
"""
# Generate pairs to be matched
pair_path = self.generate_pairs()
timer.update("generate_pairs")
# Try to rotate images so they will be all "upright", useful for deep-learning approaches that usually are not rotation invariant
if self.config.general["upright"] in ["custom", "2clusters", "exif"]:
self.rotate_upright_images(self.config.general["upright"])
timer.update("rotate_upright_images")
# Extract features
feature_path = self.extract_features()
timer.update("extract_features")
# Matching
match_path = self.match_pairs(feature_path)
# If features have been extracted on "upright" images, this function bring features back to their original image orientation
if self.config.general["upright"]:
self.rotate_back_features(feature_path)
timer.update("rotate_back_features")
# Print timing
timer.print("Deep Image Matching")
return feature_path, match_path
def generate_pairs(self, **kwargs) -> Path:
"""
Generates pairs of images for matching.
Returns:
Path: The path to the pair file containing the generated pairs of images.
"""
if self.pair_file is not None and self.strategy == "custom_pairs":
if not self.pair_file.exists():
raise FileExistsError(f"File {self.pair_file} does not exist")
pairs = get_pairs_from_file(self.pair_file)
self.pairs = [
(self.image_dir / im1, self.image_dir / im2) for im1, im2 in pairs
]
else:
pairs_generator = PairsGenerator(
self.image_list.img_paths,
self.pair_file,
self.strategy,
self.config.general["retrieval"],
self.config.general["overlap"],
self.image_dir,
self.output_dir,
**kwargs,
)
self.pairs = pairs_generator.run()
return self.pair_file
def rotate_upright_images(
self, strategy, resize_size=500, n_cores=4, multi_processing=False
) -> None:
"""
Try to rotate upright images. Useful for not rotation invariant approaches.
Rotate images are saved in 'upright_images' dir in results folder
Returns:
None
"""
gc.collect()
logger.info("Rotating images upright...")
pairs = [(item[0].name, item[1].name) for item in self.pairs]
path_to_upright_dir = self.output_dir / "upright_images"
os.makedirs(path_to_upright_dir, exist_ok=False)
images = os.listdir(self.image_dir)
logger.info(f"Copying images to {path_to_upright_dir}")
for img in images:
shutil.copy2(self.image_dir / img, path_to_upright_dir / img)
logger.info(f"{len(images)} images copied")
rotations = [0, 90, 180, 270]
# cv2_rot_params = [
# None,
# cv2.ROTATE_90_CLOCKWISE,
# cv2.ROTATE_180,
# cv2.ROTATE_90_COUNTERCLOCKWISE,
# ]
cv2_rot_params = [
None,
-90,
180,
90,
]
self.rotated_images = []
if strategy == "2clusters":
logger.info("Initializing Superpoint + LIghtGlue..")
SPextractor = SuperPointExtractor(self.config)
LGmatcher = LightGlueMatcher(self.config)
# SPextractor = SuperPointExtractor(
# config={
# "general": {},
# "extractor": {
# "keypoint_threshold": 0.005,
# "max_keypoints": 1024,
# },
# }
# )
# LGmatcher = LightGlueMatcher(
# config={
# "general": {},
# "matcher": {
# "depth_confidence": 0.95, # early stopping, disable with -1
# "width_confidence": 0.99, # point pruning, disable with -1
# "filter_threshold": 0.1, # match threshold
# },
# },
# )
cluster0 = []
cluster1 = os.listdir(path_to_upright_dir)
# Random init
random_first_img = random.randint(0, len(cluster1))
# Choose first image
# random_first_img = 0
cluster0.append(cluster1[random_first_img])
cluster1.pop(random_first_img)
# Main loop
processed_pairs = []
max_iter = len(images)
logger.info(f"Max n iter: {max_iter}")
for iter in tqdm(range(max_iter)):
rotated = []
print(
f"len(cluster0): {len(cluster0)}\t len(cluster1): {len(cluster1)}"
)
last_cluster1_len = len(cluster1)
# rotated.sort
##cluster0 = []
# for r in reversed(rotated):
# cluster0.append(cluster1[r])
# for r in reversed(rotated):
# cluster1.pop(r)
if multi_processing:
partial_upright = partial(
upright,
cluster0,
path_to_upright_dir,
rotations,
cv2_rot_params,
SPextractor,
LGmatcher,
pairs,
resize_size,
)
sublists = np.array_split(cluster1, n_cores)
with Pool(n_cores) as p:
results = p.map(partial_upright, sublists)
processed = [item[0] for item in results]
rotated = [item[1] for item in results]
processed = [
item for sublist in processed for item in sublist if item
]
self.rotated_images = self.rotated_images + [
item[0] for item in rotated if item != []
]
else:
processed, rotated = upright(
cluster0,
path_to_upright_dir,
rotations,
cv2_rot_params,
SPextractor,
LGmatcher,
pairs,
resize_size,
processed_pairs,
cluster1,
)
self.rotated_images = self.rotated_images + rotated
for r in processed:
cluster0.append(r)
cluster1 = [name for name in cluster1 if name not in cluster0]
if last_cluster1_len == len(cluster1) or len(cluster1) == 0:
break
if strategy == "custom":
with open("./config/rotations.txt") as f:
lines = f.readlines()
for line in lines:
try:
img, rot = line.strip().split(" ", 1)
self.rotated_images.append((img, int(rot)))
if int(rot) != 0:
image1 = Image.open(str(path_to_upright_dir / img)).convert(
"L"
)
p = image1.rotate(int(rot), expand=True)
p.save(str(path_to_upright_dir / img))
except:
pass
if strategy == "exif":
orientation_map = {
"Horizontal (normal)": 0,
"Rotated 180": 180,
"Rotated 90 CW": 90,
"Rotated 90 CCW": 270,
}
for img in os.listdir(self.image_dir):
image_path = path_to_upright_dir / img
image = cv2.imread(str(self.image_dir / img))
with open(str(self.image_dir / img), "rb") as image_file:
tags = exifread.process_file(image_file)
orientation_tag = "Image Orientation"
if orientation_tag in tags:
orientation_description = str(tags[orientation_tag])
orientation_degrees = orientation_map.get(
orientation_description
)
print(orientation_degrees)
if orientation_degrees is not None:
if orientation_degrees == 180:
image = cv2.rotate(image, cv2.ROTATE_180)
elif orientation_degrees == 90:
image = cv2.rotate(
image, cv2.ROTATE_90_COUNTERCLOCKWISE
)
elif orientation_degrees == 270:
image = cv2.rotate(image, cv2.ROTATE_90_CLOCKWISE)
cv2.imwrite(str(image_path), image)
out_file = self.pair_file.parent / f"{self.pair_file.stem}_rot.txt"
with open(out_file, "w") as txt_file:
for element in self.rotated_images:
txt_file.write(f"{element[0]} {element[1]}\n")
# Update image directory to the dir with upright images
# Features will be rotate accordingly on exporting, if the images have been rotated
self.image_dir = path_to_upright_dir
self.image_list = ImageList(path_to_upright_dir)
images = self.image_list.img_names
torch.cuda.empty_cache()
logger.info(f"Images rotated and saved in {path_to_upright_dir}")
gc.collect()
def extract_features(self) -> Path:
"""
Extracts features from the images using the specified local feature extraction method.
Returns:
Path: The path to the directory containing the extracted features.
Raises:
ValueError: If the local feature extraction method is invalid or not supported.
"""
logger.info(f"Extracting features with {self.extraction}...")
logger.info(f"{self.extraction} configuration: ")
pprint(self.config.extractor)
# Extract features
for img in tqdm(self.image_list):
feature_path = self._extractor.extract(img)
torch.cuda.empty_cache()
logger.info("Features extracted!")
return feature_path
def match_pairs(self, feature_path: Path, try_full_image: bool = False) -> Path:
"""
Matches features using a specified matching method.
Args:
feature_path (Path): The path to the directory containing the extracted features.
try_full_image (bool, optional): Whether to try matching the full image. Defaults to False.
Returns:
Path: The path to the directory containing the matches.
Raises:
ValueError: If the feature path does not exist.
"""
logger.info(f"Matching features with {self.matching}...")
logger.info(f"{self.matching} configuration: ")
pprint(self.config.matcher)
# Check that feature_path exists
feature_path = Path(feature_path)
if not feature_path.exists():
raise ValueError(f"Feature path {feature_path} does not exist")
# Define matches path
matches_path = feature_path.parent / "matches.h5"
# Match pairs
logger.info("Matching features...")
logger.info("")
for i, pair in enumerate(tqdm(self.pairs)):
name0 = pair[0].name if isinstance(pair[0], Path) else pair[0]
name1 = pair[1].name if isinstance(pair[1], Path) else pair[1]
im0 = self.image_dir / name0
im1 = self.image_dir / name1
logger.debug(f"Matching image pair: {name0} - {name1}")
# Run matching
self._matcher.match(
feature_path=feature_path,
matches_path=matches_path,
img0=im0,
img1=im1,
try_full_image=try_full_image,
)
timer.update("Match pair")
# NOTE: Geometric verif. has been moved to the end of the matching process
torch.cuda.empty_cache()
timer.print("matching")
return matches_path
def rotate_back_features(self, feature_path: Path) -> None:
"""
Rotates back the features.
This method rotates back the features extracted from the images that were previously rotated upright using the 'rotate_upright_images' method. The rotation is performed based on the theta value associated with each image in the 'rotated_images' list. The rotated features are then saved back to the feature file.
Parameters:
feature_path (Path): The path to the feature file containing the extracted features.
Returns:
None
Raises:
None
"""
# images = self.image_list.img_names
for img, theta in tqdm(self.rotated_images):
print("img, theta", img, theta)
features = get_features(feature_path, img)
keypoints = features["keypoints"]
rotated_keypoints = np.empty(keypoints.shape)
im = cv2.imread(str(self.image_dir / img))
H, W = im.shape[:2]
if theta == 0:
for r in range(keypoints.shape[0]):
x, y = keypoints[r, 0], keypoints[r, 1]
y_rot = y
x_rot = x
rotated_keypoints[r, 0], rotated_keypoints[r, 1] = x_rot, y_rot
if theta == 180:
for r in range(keypoints.shape[0]):
x, y = keypoints[r, 0], keypoints[r, 1]
y_rot = H - y
x_rot = W - x
rotated_keypoints[r, 0], rotated_keypoints[r, 1] = x_rot, y_rot
if theta == 270:
for r in range(keypoints.shape[0]):
x, y = keypoints[r, 0], keypoints[r, 1]
y_rot = W - x
x_rot = y
rotated_keypoints[r, 0], rotated_keypoints[r, 1] = x_rot, y_rot
if theta == 90:
for r in range(keypoints.shape[0]):
x, y = keypoints[r, 0], keypoints[r, 1]
y_rot = x
x_rot = H - y
rotated_keypoints[r, 0], rotated_keypoints[r, 1] = x_rot, y_rot
with h5py.File(feature_path, "r+", libver="latest") as fd:
del fd[img]
features["keypoints"] = rotated_keypoints
grp = fd.create_group(img)
for k, v in features.items():
if k == "im_path" or k == "feature_path":
grp.create_dataset(k, data=str(v))
if isinstance(v, np.ndarray):
grp.create_dataset(k, data=v)
logger.info("Features rotated back.")
|