Image Matching Class

Page under construction...

ImageMatching

ImageMatching class for performing image matching and feature extraction.

METHOD DESCRIPTION
generate_pairs

Generates pairs of images for matching.

extract_features

Extracts features from the images.

match_pairs

Matches pairs of images.

Source code in src/deep_image_matching/image_matching.py
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
class ImageMatching:
    """
    ImageMatching class for performing image matching and feature extraction.

    Methods:
        __init__(self, imgs_dir, output_dir, matching_strategy, local_features, matching_method, retrieval_option=None, pair_file=None, overlap=None, existing_colmap_model=None, custom_config={})
            Initializes the ImageMatching class.
        generate_pairs(self, **kwargs) -> Path:
            Generates pairs of images for matching.
        rotate_upright_images(self)
            Rotates upright images.
        extract_features(self) -> Path:
            Extracts features from the images.
        match_pairs(self, feature_path, try_full_image=False) -> Path:
            Matches pairs of images.
        rotate_back_features(self, feature_path)
            Rotates back the features.

    """

    default_conf_general = {
        "quality": Quality.MEDIUM,
        "tile_selection": TileSelection.NONE,
        "geom_verification": GeometricVerification.PYDEGENSAC,
        "output_dir": "output",
        "tile_size": [2048, 1365],
        "tile_overlap": 0,
        "force_cpu": False,
        "do_viz": False,
        "fast_viz": True,
        "hide_matching_track": True,
        "do_viz_tiles": False,
    }
    # pair_file=pair_file,
    # retrieval_option=retrieval_option,
    # overlap=overlap,
    # existing_colmap_model=existing_colmap_model,

    def __init__(
        # TODO: add default values for not necessary parameters
        self,
        imgs_dir: Path,
        output_dir: Path,
        matching_strategy: str,
        local_features: str,
        matching_method: str,
        retrieval_option: str = None,
        pair_file: Path = None,
        overlap: int = None,
        existing_colmap_model: Path = None,
        custom_config: dict = {},
    ):
        """
        Initializes the ImageMatching class.

        Parameters:
            imgs_dir (Path): Path to the directory containing the images.
            output_dir (Path): Path to the output directory for the results.
            matching_strategy (str): The strategy for generating pairs of images for matching.
            local_features (str): The method for extracting local features from the images.
            matching_method (str): The method for matching pairs of images.
            retrieval_option (str, optional): The retrieval option for generating pairs of images. Defaults to None.
            pair_file (Path, optional): Path to the file containing custom pairs of images. Required when 'retrieval_option' is set to 'custom_pairs'. Defaults to None.
            overlap (int, optional): The overlap between tiles. Required when 'retrieval_option' is set to 'sequential'. Defaults to None.
            existing_colmap_model (Path, optional): Path to the existing COLMAP model. Required when 'retrieval_option' is set to 'covisibility'. Defaults to None.
            custom_config (dict, optional): Custom configuration settings. Defaults to {}.

        Raises:
            ValueError: If the 'overlap' option is required but not provided when 'retrieval_option' is set to 'sequential'.
            ValueError: If the 'pair_file' option is required but not provided when 'retrieval_option' is set to 'custom_pairs'.
            ValueError: If the 'pair_file' does not exist when 'retrieval_option' is set to 'custom_pairs'.
            ValueError: If the 'existing_colmap_model' option is required but not provided when 'retrieval_option' is set to 'covisibility'.
            ValueError: If the 'existing_colmap_model' does not exist when 'retrieval_option' is set to 'covisibility'.
            ValueError: If the image folder is empty or contains only one image.

        Returns:
            None
        """
        self.image_dir = Path(imgs_dir)
        self.output_dir = Path(output_dir)
        self.matching_strategy = matching_strategy
        self.retrieval_option = retrieval_option
        self.local_features = local_features
        self.matching_method = matching_method
        self.pair_file = Path(pair_file) if pair_file else None
        self.overlap = overlap
        self.existing_colmap_model = existing_colmap_model

        # Merge default and custom config
        self.custom_config = custom_config
        self.custom_config["general"] = {
            **self.default_conf_general,
            **custom_config["general"],
        }

        # Check that parameters are valid
        if retrieval_option == "sequential":
            if overlap is None:
                raise ValueError(
                    "'overlap' option is required when 'strategy' is set to sequential"
                )
        elif retrieval_option == "custom_pairs":
            if self.pair_file is None:
                raise ValueError(
                    "'pair_file' option is required when 'strategy' is set to custom_pairs"
                )
            else:
                if not self.pair_file.exists():
                    raise ValueError(f"File {self.pair_file} does not exist")
        elif retrieval_option == "covisibility":
            if self.existing_colmap_model is None:
                raise ValueError(
                    "'existing_colmap_model' option is required when 'strategy' is set to covisibility"
                )
            else:
                if not self.existing_colmap_model.exists():
                    raise ValueError(
                        f"File {self.existing_colmap_model} does not exist"
                    )

        # Initialize ImageList class
        self.image_list = ImageList(imgs_dir)
        images = self.image_list.img_names
        if len(images) == 0:
            raise ValueError(f"Image folder empty. Supported formats: {self.image_ext}")
        elif len(images) == 1:
            raise ValueError("Image folder must contain at least two images")

        # Initialize output directory
        self.output_dir.mkdir(parents=True, exist_ok=True)

        # Initialize extractor
        try:
            Extractor = extractor_loader(extractors, self.local_features)
        except AttributeError:
            raise ValueError(
                f"Invalid local feature extractor. {self.local_features} is not supported."
            )
        self._extractor = Extractor(self.custom_config)

        # Initialize matcher
        try:
            Matcher = matcher_loader(matchers, self.matching_method)
        except AttributeError:
            raise ValueError(
                f"Invalid matcher. {self.matching_method} is not supported."
            )
        if self.matching_method == "lightglue":
            self._matcher = Matcher(
                local_features=self.local_features, config=self.custom_config
            )
        else:
            self._matcher = Matcher(self.custom_config)

        # Print configuration
        logger.info("Running image matching with the following configuration:")
        logger.info(f"  Image folder: {self.image_dir}")
        logger.info(f"  Output folder: {self.output_dir}")
        logger.info(f"  Number of images: {len(self.image_list)}")
        logger.info(f"  Matching strategy: {self.matching_strategy}")
        logger.info(f"  Image quality: {self.custom_config['general']['quality'].name}")
        logger.info(
            f"  Tile selection: {self.custom_config['general']['tile_selection'].name}"
        )
        logger.info(f"  Feature extraction method: {self.local_features}")
        logger.info(f"  Matching method: {self.matching_method}")
        logger.info(
            f"  Geometric verification: {self.custom_config['general']['geom_verification'].name}"
        )
        logger.info(f"  CUDA available: {torch.cuda.is_available()}")

    @property
    def img_names(self):
        return self.image_list.img_names

    def generate_pairs(self, **kwargs) -> Path:
        """
        Generates pairs of images for matching.

        Returns:
            Path: The path to the pair file containing the generated pairs of images.
        """
        if self.pair_file is not None and self.matching_strategy == "custom_pairs":
            if not self.pair_file.exists():
                raise FileExistsError(f"File {self.pair_file} does not exist")

            pairs = get_pairs_from_file(self.pair_file)
            self.pairs = [
                (self.image_dir / im1, self.image_dir / im2) for im1, im2 in pairs
            ]

        else:
            pairs_generator = PairsGenerator(
                self.image_list.img_paths,
                self.pair_file,
                self.matching_strategy,
                self.retrieval_option,
                self.overlap,
                self.image_dir,
                self.output_dir,
                self.existing_colmap_model,
                **kwargs,
            )
            self.pairs = pairs_generator.run()

        return self.pair_file

    def rotate_upright_images(self):
        """
        Rotates the images in the image directory to an upright position.

        This method rotates the images in the image directory to an upright position using the OpenCV library. The rotated images are saved in a separate directory called "upright_images" within the output directory.

        Returns:
            None

        Raises:
            None
        """
        logger.info("Rotating images upright...")
        path_to_upright_dir = self.output_dir / "upright_images"
        os.makedirs(path_to_upright_dir, exist_ok=False)
        images = os.listdir(self.image_dir)
        processed_images = []

        for img in images:
            shutil.copy(self.image_dir / img, path_to_upright_dir / img)

        rotations = [0, 90, 180, 270]
        cv2_rot_params = [
            None,
            cv2.ROTATE_90_CLOCKWISE,
            cv2.ROTATE_180,
            cv2.ROTATE_90_COUNTERCLOCKWISE,
        ]
        self.rotated_images = []
        SPextractor = SuperPointExtractor(
            config={
                "general": {},
                "extractor": {
                    "keypoint_threshold": 0.005,
                    "max_keypoints": 1024,
                },
            }
        )
        LGmatcher = LightGlueMatcher(
            config={
                "general": {},
                "matcher": {
                    "depth_confidence": 0.95,  # early stopping, disable with -1
                    "width_confidence": 0.99,  # point pruning, disable with -1
                    "filter_threshold": 0.1,  # match threshold
                },
            },
        )
        features = {
            "feat0": None,
            "feat1": None,
        }
        for pair in tqdm(self.pairs):
            matchesXrotation = []

            # Reference image
            ref_image = pair[0].name
            image0 = cv2.imread(str(path_to_upright_dir / ref_image))
            H, W = image0.shape[:2]
            new_width = 500
            new_height = int(H * 500 / W)
            image0 = cv2.resize(image0, (new_width, new_height))
            image0 = cv2.cvtColor(image0, cv2.COLOR_BGR2GRAY)
            features["feat0"] = SPextractor._extract(image0)

            # Target image - find the best rotation
            target_img = pair[1].name
            if target_img not in processed_images:
                # processed_images.append(target_img)
                image1 = cv2.imread(str(path_to_upright_dir / target_img))
                for rotation, cv2rotation in zip(rotations, cv2_rot_params):
                    H, W = image1.shape[:2]
                    new_width = 500
                    new_height = int(H * 500 / W)
                    _image1 = cv2.resize(image1, (new_width, new_height))
                    _image1 = cv2.cvtColor(_image1, cv2.COLOR_BGR2GRAY)
                    # rotation_matrix = cv2.getRotationMatrix2D((new_width / 2, new_height / 2), rotation, 1.0)
                    # rotated_image = cv2.warpAffine(image, rotation_matrix, (new_width, new_height))
                    if rotation != 0:
                        _image1 = cv2.rotate(_image1, cv2rotation)
                    features["feat1"] = SPextractor._extract(_image1)
                    matches = LGmatcher._match_pairs(
                        features["feat0"], features["feat1"]
                    )
                    matchesXrotation.append((rotation, matches.shape[0]))
                index_of_max = max(
                    range(len(matchesXrotation)), key=lambda i: matchesXrotation[i][1]
                )
                n_matches = matchesXrotation[index_of_max][1]
                if index_of_max != 0 and n_matches > 100:
                    processed_images.append(target_img)
                    self.rotated_images.append((pair[1].name, rotations[index_of_max]))
                    rotated_image1 = cv2.rotate(image1, cv2_rot_params[index_of_max])
                    cv2.imwrite(str(path_to_upright_dir / target_img), rotated_image1)

        out_file = self.pair_file.parent / f"{self.pair_file.stem}_rot.txt"
        with open(out_file, "w") as txt_file:
            for element in self.rotated_images:
                txt_file.write(f"{element[0]} {element[1]}\n")

        # Update image directory to the dir with upright images
        # Features will be rotate accordingly on exporting, if the images have been rotated
        self.image_dir = path_to_upright_dir
        self.image_list = ImageList(path_to_upright_dir)
        images = self.image_list.img_names

        torch.cuda.empty_cache()
        logger.info(f"Images rotated and saved in {path_to_upright_dir}")

    def extract_features(self) -> Path:
        """
        Extracts features from the images using the specified local feature extraction method.

        Returns:
            Path: The path to the directory containing the extracted features.

        Raises:
            ValueError: If the local feature extraction method is invalid or not supported.

        """
        logger.info(f"Extracting features with {self.local_features}...")
        logger.info(f"{self.local_features} configuration: ")
        pprint(self.custom_config["extractor"])

        # Extract features
        for img in tqdm(self.image_list):
            feature_path = self._extractor.extract(img)

        torch.cuda.empty_cache()
        logger.info("Features extracted!")

        return feature_path

    def match_pairs(self, feature_path: Path, try_full_image: bool = False) -> Path:
        """
        Matches features using a specified matching method.

        Args:
            feature_path (Path): The path to the directory containing the extracted features.
            try_full_image (bool, optional): Whether to try matching the full image. Defaults to False.

        Returns:
            Path: The path to the directory containing the matches.

        Raises:
            ValueError: If the feature path does not exist.
        """
        timer = Timer(log_level="debug")

        logger.info(f"Matching features with {self.matching_method}...")
        logger.info(f"{self.matching_method} configuration: ")
        pprint(self.custom_config["matcher"])
        # Check that feature_path exists
        feature_path = Path(feature_path)
        if not feature_path.exists():
            raise ValueError(f"Feature path {feature_path} does not exist")

        # Define matches path
        matches_path = feature_path.parent / "matches.h5"

        # Match pairs
        logger.info("Matching features...")
        logger.info("")
        for i, pair in enumerate(tqdm(self.pairs)):
            name0 = pair[0].name if isinstance(pair[0], Path) else pair[0]
            name1 = pair[1].name if isinstance(pair[1], Path) else pair[1]
            im0 = self.image_dir / name0
            im1 = self.image_dir / name1

            logger.debug(f"Matching image pair: {name0} - {name1}")

            # Run matching
            self._matcher.match(
                feature_path=feature_path,
                matches_path=matches_path,
                img0=im0,
                img1=im1,
                try_full_image=try_full_image,
            )
            timer.update("Match pair")

            # NOTE: Geometric verif. has been moved to the end of the matching process

        # TODO: Clean up features with no matches

        torch.cuda.empty_cache()
        timer.print("matching")

        return matches_path

    def rotate_back_features(self, feature_path: Path) -> None:
        """
        Rotates back the features.

        This method rotates back the features extracted from the images that were previously rotated upright using the 'rotate_upright_images' method. The rotation is performed based on the theta value associated with each image in the 'rotated_images' list. The rotated features are then saved back to the feature file.

        Parameters:
            feature_path (Path): The path to the feature file containing the extracted features.

        Returns:
            None

        Raises:
            None
        """
        # images = self.image_list.img_names
        for img, theta in tqdm(self.rotated_images):
            features = get_features(feature_path, img)
            keypoints = features["keypoints"]
            rotated_keypoints = np.empty(keypoints.shape)
            im = cv2.imread(str(self.image_dir / img))
            H, W = im.shape[:2]

            if theta == 180:
                for r in range(keypoints.shape[0]):
                    x, y = keypoints[r, 0], keypoints[r, 1]
                    y_rot = H - y
                    x_rot = W - x
                    rotated_keypoints[r, 0], rotated_keypoints[r, 1] = x_rot, y_rot

            if theta == 90:
                for r in range(keypoints.shape[0]):
                    x, y = keypoints[r, 0], keypoints[r, 1]
                    y_rot = W - x
                    x_rot = y
                    rotated_keypoints[r, 0], rotated_keypoints[r, 1] = x_rot, y_rot

            if theta == 270:
                for r in range(keypoints.shape[0]):
                    x, y = keypoints[r, 0], keypoints[r, 1]
                    y_rot = x
                    x_rot = H - y
                    rotated_keypoints[r, 0], rotated_keypoints[r, 1] = x_rot, y_rot

            with h5py.File(feature_path, "r+", libver="latest") as fd:
                del fd[img]
                features["keypoints"] = rotated_keypoints
                grp = fd.create_group(img)
                for k, v in features.items():
                    if k == "im_path" or k == "feature_path":
                        grp.create_dataset(k, data=str(v))
                    if isinstance(v, np.ndarray):
                        grp.create_dataset(k, data=v)

        logger.info("Features rotated back.")

__init__(imgs_dir, output_dir, matching_strategy, local_features, matching_method, retrieval_option=None, pair_file=None, overlap=None, existing_colmap_model=None, custom_config={})

Initializes the ImageMatching class.

Parameters:
  • imgs_dir (Path) –

    Path to the directory containing the images.

  • output_dir (Path) –

    Path to the output directory for the results.

  • matching_strategy (str) –

    The strategy for generating pairs of images for matching.

  • local_features (str) –

    The method for extracting local features from the images.

  • matching_method (str) –

    The method for matching pairs of images.

  • retrieval_option (str, default: None ) –

    The retrieval option for generating pairs of images. Defaults to None.

  • pair_file (Path, default: None ) –

    Path to the file containing custom pairs of images. Required when 'retrieval_option' is set to 'custom_pairs'. Defaults to None.

  • overlap (int, default: None ) –

    The overlap between tiles. Required when 'retrieval_option' is set to 'sequential'. Defaults to None.

  • existing_colmap_model (Path, default: None ) –

    Path to the existing COLMAP model. Required when 'retrieval_option' is set to 'covisibility'. Defaults to None.

  • custom_config (dict, default: {} ) –

    Custom configuration settings. Defaults to {}.

Raises:
  • ValueError

    If the 'overlap' option is required but not provided when 'retrieval_option' is set to 'sequential'.

  • ValueError

    If the 'pair_file' option is required but not provided when 'retrieval_option' is set to 'custom_pairs'.

  • ValueError

    If the 'pair_file' does not exist when 'retrieval_option' is set to 'custom_pairs'.

  • ValueError

    If the 'existing_colmap_model' option is required but not provided when 'retrieval_option' is set to 'covisibility'.

  • ValueError

    If the 'existing_colmap_model' does not exist when 'retrieval_option' is set to 'covisibility'.

  • ValueError

    If the image folder is empty or contains only one image.

Returns:
  • None

Source code in src/deep_image_matching/image_matching.py
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
def __init__(
    # TODO: add default values for not necessary parameters
    self,
    imgs_dir: Path,
    output_dir: Path,
    matching_strategy: str,
    local_features: str,
    matching_method: str,
    retrieval_option: str = None,
    pair_file: Path = None,
    overlap: int = None,
    existing_colmap_model: Path = None,
    custom_config: dict = {},
):
    """
    Initializes the ImageMatching class.

    Parameters:
        imgs_dir (Path): Path to the directory containing the images.
        output_dir (Path): Path to the output directory for the results.
        matching_strategy (str): The strategy for generating pairs of images for matching.
        local_features (str): The method for extracting local features from the images.
        matching_method (str): The method for matching pairs of images.
        retrieval_option (str, optional): The retrieval option for generating pairs of images. Defaults to None.
        pair_file (Path, optional): Path to the file containing custom pairs of images. Required when 'retrieval_option' is set to 'custom_pairs'. Defaults to None.
        overlap (int, optional): The overlap between tiles. Required when 'retrieval_option' is set to 'sequential'. Defaults to None.
        existing_colmap_model (Path, optional): Path to the existing COLMAP model. Required when 'retrieval_option' is set to 'covisibility'. Defaults to None.
        custom_config (dict, optional): Custom configuration settings. Defaults to {}.

    Raises:
        ValueError: If the 'overlap' option is required but not provided when 'retrieval_option' is set to 'sequential'.
        ValueError: If the 'pair_file' option is required but not provided when 'retrieval_option' is set to 'custom_pairs'.
        ValueError: If the 'pair_file' does not exist when 'retrieval_option' is set to 'custom_pairs'.
        ValueError: If the 'existing_colmap_model' option is required but not provided when 'retrieval_option' is set to 'covisibility'.
        ValueError: If the 'existing_colmap_model' does not exist when 'retrieval_option' is set to 'covisibility'.
        ValueError: If the image folder is empty or contains only one image.

    Returns:
        None
    """
    self.image_dir = Path(imgs_dir)
    self.output_dir = Path(output_dir)
    self.matching_strategy = matching_strategy
    self.retrieval_option = retrieval_option
    self.local_features = local_features
    self.matching_method = matching_method
    self.pair_file = Path(pair_file) if pair_file else None
    self.overlap = overlap
    self.existing_colmap_model = existing_colmap_model

    # Merge default and custom config
    self.custom_config = custom_config
    self.custom_config["general"] = {
        **self.default_conf_general,
        **custom_config["general"],
    }

    # Check that parameters are valid
    if retrieval_option == "sequential":
        if overlap is None:
            raise ValueError(
                "'overlap' option is required when 'strategy' is set to sequential"
            )
    elif retrieval_option == "custom_pairs":
        if self.pair_file is None:
            raise ValueError(
                "'pair_file' option is required when 'strategy' is set to custom_pairs"
            )
        else:
            if not self.pair_file.exists():
                raise ValueError(f"File {self.pair_file} does not exist")
    elif retrieval_option == "covisibility":
        if self.existing_colmap_model is None:
            raise ValueError(
                "'existing_colmap_model' option is required when 'strategy' is set to covisibility"
            )
        else:
            if not self.existing_colmap_model.exists():
                raise ValueError(
                    f"File {self.existing_colmap_model} does not exist"
                )

    # Initialize ImageList class
    self.image_list = ImageList(imgs_dir)
    images = self.image_list.img_names
    if len(images) == 0:
        raise ValueError(f"Image folder empty. Supported formats: {self.image_ext}")
    elif len(images) == 1:
        raise ValueError("Image folder must contain at least two images")

    # Initialize output directory
    self.output_dir.mkdir(parents=True, exist_ok=True)

    # Initialize extractor
    try:
        Extractor = extractor_loader(extractors, self.local_features)
    except AttributeError:
        raise ValueError(
            f"Invalid local feature extractor. {self.local_features} is not supported."
        )
    self._extractor = Extractor(self.custom_config)

    # Initialize matcher
    try:
        Matcher = matcher_loader(matchers, self.matching_method)
    except AttributeError:
        raise ValueError(
            f"Invalid matcher. {self.matching_method} is not supported."
        )
    if self.matching_method == "lightglue":
        self._matcher = Matcher(
            local_features=self.local_features, config=self.custom_config
        )
    else:
        self._matcher = Matcher(self.custom_config)

    # Print configuration
    logger.info("Running image matching with the following configuration:")
    logger.info(f"  Image folder: {self.image_dir}")
    logger.info(f"  Output folder: {self.output_dir}")
    logger.info(f"  Number of images: {len(self.image_list)}")
    logger.info(f"  Matching strategy: {self.matching_strategy}")
    logger.info(f"  Image quality: {self.custom_config['general']['quality'].name}")
    logger.info(
        f"  Tile selection: {self.custom_config['general']['tile_selection'].name}"
    )
    logger.info(f"  Feature extraction method: {self.local_features}")
    logger.info(f"  Matching method: {self.matching_method}")
    logger.info(
        f"  Geometric verification: {self.custom_config['general']['geom_verification'].name}"
    )
    logger.info(f"  CUDA available: {torch.cuda.is_available()}")

generate_pairs(**kwargs)

Generates pairs of images for matching.

Returns:
  • Path( Path ) –

    The path to the pair file containing the generated pairs of images.

Source code in src/deep_image_matching/image_matching.py
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
def generate_pairs(self, **kwargs) -> Path:
    """
    Generates pairs of images for matching.

    Returns:
        Path: The path to the pair file containing the generated pairs of images.
    """
    if self.pair_file is not None and self.matching_strategy == "custom_pairs":
        if not self.pair_file.exists():
            raise FileExistsError(f"File {self.pair_file} does not exist")

        pairs = get_pairs_from_file(self.pair_file)
        self.pairs = [
            (self.image_dir / im1, self.image_dir / im2) for im1, im2 in pairs
        ]

    else:
        pairs_generator = PairsGenerator(
            self.image_list.img_paths,
            self.pair_file,
            self.matching_strategy,
            self.retrieval_option,
            self.overlap,
            self.image_dir,
            self.output_dir,
            self.existing_colmap_model,
            **kwargs,
        )
        self.pairs = pairs_generator.run()

    return self.pair_file

rotate_upright_images()

Rotates the images in the image directory to an upright position.

This method rotates the images in the image directory to an upright position using the OpenCV library. The rotated images are saved in a separate directory called "upright_images" within the output directory.

Returns:
  • None

Source code in src/deep_image_matching/image_matching.py
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
def rotate_upright_images(self):
    """
    Rotates the images in the image directory to an upright position.

    This method rotates the images in the image directory to an upright position using the OpenCV library. The rotated images are saved in a separate directory called "upright_images" within the output directory.

    Returns:
        None

    Raises:
        None
    """
    logger.info("Rotating images upright...")
    path_to_upright_dir = self.output_dir / "upright_images"
    os.makedirs(path_to_upright_dir, exist_ok=False)
    images = os.listdir(self.image_dir)
    processed_images = []

    for img in images:
        shutil.copy(self.image_dir / img, path_to_upright_dir / img)

    rotations = [0, 90, 180, 270]
    cv2_rot_params = [
        None,
        cv2.ROTATE_90_CLOCKWISE,
        cv2.ROTATE_180,
        cv2.ROTATE_90_COUNTERCLOCKWISE,
    ]
    self.rotated_images = []
    SPextractor = SuperPointExtractor(
        config={
            "general": {},
            "extractor": {
                "keypoint_threshold": 0.005,
                "max_keypoints": 1024,
            },
        }
    )
    LGmatcher = LightGlueMatcher(
        config={
            "general": {},
            "matcher": {
                "depth_confidence": 0.95,  # early stopping, disable with -1
                "width_confidence": 0.99,  # point pruning, disable with -1
                "filter_threshold": 0.1,  # match threshold
            },
        },
    )
    features = {
        "feat0": None,
        "feat1": None,
    }
    for pair in tqdm(self.pairs):
        matchesXrotation = []

        # Reference image
        ref_image = pair[0].name
        image0 = cv2.imread(str(path_to_upright_dir / ref_image))
        H, W = image0.shape[:2]
        new_width = 500
        new_height = int(H * 500 / W)
        image0 = cv2.resize(image0, (new_width, new_height))
        image0 = cv2.cvtColor(image0, cv2.COLOR_BGR2GRAY)
        features["feat0"] = SPextractor._extract(image0)

        # Target image - find the best rotation
        target_img = pair[1].name
        if target_img not in processed_images:
            # processed_images.append(target_img)
            image1 = cv2.imread(str(path_to_upright_dir / target_img))
            for rotation, cv2rotation in zip(rotations, cv2_rot_params):
                H, W = image1.shape[:2]
                new_width = 500
                new_height = int(H * 500 / W)
                _image1 = cv2.resize(image1, (new_width, new_height))
                _image1 = cv2.cvtColor(_image1, cv2.COLOR_BGR2GRAY)
                # rotation_matrix = cv2.getRotationMatrix2D((new_width / 2, new_height / 2), rotation, 1.0)
                # rotated_image = cv2.warpAffine(image, rotation_matrix, (new_width, new_height))
                if rotation != 0:
                    _image1 = cv2.rotate(_image1, cv2rotation)
                features["feat1"] = SPextractor._extract(_image1)
                matches = LGmatcher._match_pairs(
                    features["feat0"], features["feat1"]
                )
                matchesXrotation.append((rotation, matches.shape[0]))
            index_of_max = max(
                range(len(matchesXrotation)), key=lambda i: matchesXrotation[i][1]
            )
            n_matches = matchesXrotation[index_of_max][1]
            if index_of_max != 0 and n_matches > 100:
                processed_images.append(target_img)
                self.rotated_images.append((pair[1].name, rotations[index_of_max]))
                rotated_image1 = cv2.rotate(image1, cv2_rot_params[index_of_max])
                cv2.imwrite(str(path_to_upright_dir / target_img), rotated_image1)

    out_file = self.pair_file.parent / f"{self.pair_file.stem}_rot.txt"
    with open(out_file, "w") as txt_file:
        for element in self.rotated_images:
            txt_file.write(f"{element[0]} {element[1]}\n")

    # Update image directory to the dir with upright images
    # Features will be rotate accordingly on exporting, if the images have been rotated
    self.image_dir = path_to_upright_dir
    self.image_list = ImageList(path_to_upright_dir)
    images = self.image_list.img_names

    torch.cuda.empty_cache()
    logger.info(f"Images rotated and saved in {path_to_upright_dir}")

extract_features()

Extracts features from the images using the specified local feature extraction method.

Returns:
  • Path( Path ) –

    The path to the directory containing the extracted features.

Raises:
  • ValueError

    If the local feature extraction method is invalid or not supported.

Source code in src/deep_image_matching/image_matching.py
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
def extract_features(self) -> Path:
    """
    Extracts features from the images using the specified local feature extraction method.

    Returns:
        Path: The path to the directory containing the extracted features.

    Raises:
        ValueError: If the local feature extraction method is invalid or not supported.

    """
    logger.info(f"Extracting features with {self.local_features}...")
    logger.info(f"{self.local_features} configuration: ")
    pprint(self.custom_config["extractor"])

    # Extract features
    for img in tqdm(self.image_list):
        feature_path = self._extractor.extract(img)

    torch.cuda.empty_cache()
    logger.info("Features extracted!")

    return feature_path

match_pairs(feature_path, try_full_image=False)

Matches features using a specified matching method.

Parameters:
  • feature_path (Path) –

    The path to the directory containing the extracted features.

  • try_full_image (bool, default: False ) –

    Whether to try matching the full image. Defaults to False.

Returns:
  • Path( Path ) –

    The path to the directory containing the matches.

Raises:
  • ValueError

    If the feature path does not exist.

Source code in src/deep_image_matching/image_matching.py
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
def match_pairs(self, feature_path: Path, try_full_image: bool = False) -> Path:
    """
    Matches features using a specified matching method.

    Args:
        feature_path (Path): The path to the directory containing the extracted features.
        try_full_image (bool, optional): Whether to try matching the full image. Defaults to False.

    Returns:
        Path: The path to the directory containing the matches.

    Raises:
        ValueError: If the feature path does not exist.
    """
    timer = Timer(log_level="debug")

    logger.info(f"Matching features with {self.matching_method}...")
    logger.info(f"{self.matching_method} configuration: ")
    pprint(self.custom_config["matcher"])
    # Check that feature_path exists
    feature_path = Path(feature_path)
    if not feature_path.exists():
        raise ValueError(f"Feature path {feature_path} does not exist")

    # Define matches path
    matches_path = feature_path.parent / "matches.h5"

    # Match pairs
    logger.info("Matching features...")
    logger.info("")
    for i, pair in enumerate(tqdm(self.pairs)):
        name0 = pair[0].name if isinstance(pair[0], Path) else pair[0]
        name1 = pair[1].name if isinstance(pair[1], Path) else pair[1]
        im0 = self.image_dir / name0
        im1 = self.image_dir / name1

        logger.debug(f"Matching image pair: {name0} - {name1}")

        # Run matching
        self._matcher.match(
            feature_path=feature_path,
            matches_path=matches_path,
            img0=im0,
            img1=im1,
            try_full_image=try_full_image,
        )
        timer.update("Match pair")

        # NOTE: Geometric verif. has been moved to the end of the matching process

    # TODO: Clean up features with no matches

    torch.cuda.empty_cache()
    timer.print("matching")

    return matches_path

rotate_back_features(feature_path)

Rotates back the features.

This method rotates back the features extracted from the images that were previously rotated upright using the 'rotate_upright_images' method. The rotation is performed based on the theta value associated with each image in the 'rotated_images' list. The rotated features are then saved back to the feature file.

Parameters:
  • feature_path (Path) –

    The path to the feature file containing the extracted features.

Returns:
  • None

    None

Source code in src/deep_image_matching/image_matching.py
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
def rotate_back_features(self, feature_path: Path) -> None:
    """
    Rotates back the features.

    This method rotates back the features extracted from the images that were previously rotated upright using the 'rotate_upright_images' method. The rotation is performed based on the theta value associated with each image in the 'rotated_images' list. The rotated features are then saved back to the feature file.

    Parameters:
        feature_path (Path): The path to the feature file containing the extracted features.

    Returns:
        None

    Raises:
        None
    """
    # images = self.image_list.img_names
    for img, theta in tqdm(self.rotated_images):
        features = get_features(feature_path, img)
        keypoints = features["keypoints"]
        rotated_keypoints = np.empty(keypoints.shape)
        im = cv2.imread(str(self.image_dir / img))
        H, W = im.shape[:2]

        if theta == 180:
            for r in range(keypoints.shape[0]):
                x, y = keypoints[r, 0], keypoints[r, 1]
                y_rot = H - y
                x_rot = W - x
                rotated_keypoints[r, 0], rotated_keypoints[r, 1] = x_rot, y_rot

        if theta == 90:
            for r in range(keypoints.shape[0]):
                x, y = keypoints[r, 0], keypoints[r, 1]
                y_rot = W - x
                x_rot = y
                rotated_keypoints[r, 0], rotated_keypoints[r, 1] = x_rot, y_rot

        if theta == 270:
            for r in range(keypoints.shape[0]):
                x, y = keypoints[r, 0], keypoints[r, 1]
                y_rot = x
                x_rot = H - y
                rotated_keypoints[r, 0], rotated_keypoints[r, 1] = x_rot, y_rot

        with h5py.File(feature_path, "r+", libver="latest") as fd:
            del fd[img]
            features["keypoints"] = rotated_keypoints
            grp = fd.create_group(img)
            for k, v in features.items():
                if k == "im_path" or k == "feature_path":
                    grp.create_dataset(k, data=str(v))
                if isinstance(v, np.ndarray):
                    grp.create_dataset(k, data=v)

    logger.info("Features rotated back.")